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We investigate the dynamical states of a two-dimensional network of Hindmarsh-Rose spiking neurons, in
the vicinity of the current threshold where the single neuron becomes active. Each neuron is electrically
coupled with neurons in its close neighborhood. The existence of multistable synchronization states is estab-
lished and discussed. We also show that, provided adequate initial conditions, the collective behavior is able to
keep the network in activity, even for current values far below the activity threshold of the single neuron. A
phase diagram of the different network states is presented for a large interval of the coupling-current parameter
space.
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I. INTRODUCTION

The whole brain is a complex system composed of sub-
units specialized to perform different but integrated tasks.
Apart from this complexity, it is common sense among neu-
roscientists the assumption that all computational ability of a
living brain emerges from the collective behavior of a large
set of spiking neurons on each of its subunits.

A realistic model of a biological neuron was proposed by
Hindmarsh and Rose �HR� �1�. The isolated HR neuron has
the ability to reproduce distinct biological neuronal activities
such as quiescence, regular or chaotic spikes, and regular or
chaotic spike trains with low computational cost. A simple
system composed of two interacting HR neurons shows a
rich dynamical activity �2–4�. A two-dimensional �2D� net-
work of HR neurons with nearest-neighbors electrical cou-
pling is an example of an excitable medium showing bista-
bility �5,6�. This means that a globally synchronized
stationary state may be reached evolving from random initial
conditions; but also, a partially synchronized stationary state,
where spirals and traveling waves are formed, can be at-
tained following an appropriate initial annealing procedure
�5�. Whether the coding in the cortex uses either spike trains
or individual spikes, either partial or global synchronization,
is presently a matter of research �7�. Recently, it has been
argued that partial synchronization could explain the large
dynamic range of sensory cortex �8�.

In order to qualify the HR model as a suitable model for
information coding, it is worth studying the interplay among
quiescence, global synchronization, and partial synchroniza-
tion in a model network. Unfortunately, to our knowledge, no
analytical treatment with this purpose has been developed
yet. In this paper, results of a numerical investigation of the
different synchronization states of the 2D HR model, in the
vicinity of the activity threshold, are reported. The main em-
phasis is devoted to the elaboration of a phase diagram
showing the dominant dynamical attractors, which are iden-
tified by simple, but powerful, measuring tools. The paper is
organized as follows: in the next section the HR model is
recalled and its assembling in the network is presented. In

Sec. III we show the distinction between global and partial
synchronization; macroscopic measures aiming to identify
these network states are introduced, and the main results are
presented and discussed. Some concluding remarks can be
found at the end of the paper.

II. MODEL

We deal in this paper with a simple model of the brain
cortex composed of a 2D square network N of N=L�L HR
neurons. The time evolution of the neuron labeled i�N is
described by the set of equations

dxi

dt
= yi + 3xi

2 − xi
3 − zi + I +

�

�V� �j�V
�xj − xi� ,

dyi

dt
= 1 − 5xi

2 − yi,

dzi

dt
= − rzi + rS�xi + 1.618� . �1�

Variable xi represents the membrane potential. Variables yi
and zi represent, respectively, “fast” and “slow” ion currents
in the neuron dynamics. Constants r and S are model param-
eters adjusted in order to approximate the biological behav-
ior. The parameter I accounts for an external exciting current
following in vitro measure protocol. The electric coupling
with �V� neurons belonging to the neighborhood V is intro-
duced with the addition of an ohmic term to the first equation
for each neuron. The parameter � plays the role of a uniform
conductivity. We define the neighborhood of neuron i as �j
�N: �r j −ri��R�, where R is the interaction range. Periodic
boundary conditions are imposed. Through all this work, we
assume the literature values r=0.0021 and S=4 �see Ref.
�5��. The model equations were integrated using a variable
step fourth-order Runge-Kutta algorithm.

In its first version, the isolated HR neuron model was
derived from the FitzHugh-Nagumo model �9,10� adapted to
account for the observed “tail current reversal” in voltage
clamp experiments �11�. This system, composed of two first-
order ordinary differential equations, presents as solutions
either a fixed point �subthreshold stable resting state� or a
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limit cycle �stable firing�, depending on the external current
applied. In the search for a model exhibiting triggered firing,
an adaptation variable �the last of Eqs. �1�� with a long time
constant was added changing the applied current I to an ef-
fective one, I−z. In this manner, above some minimal cur-
rent, the system shows a spiking behavior followed by a long
resting state �1�.

Stemming from this construction, the single HR neuron
shows a quiescent fixed-point solution for low currents.
From the eigenvalues of the Jacobian of Eqs. �1� evaluated at
such low currents, we have found that this solution becomes
unstable for I*�1.3616. In fact, at this fixed point, one of
the eigenvalues is negative ��1	−14.2030�, indicating
strong contraction in one direction, while the two other, �2,3,
are complex conjugate with null real part, suggesting a two-
dimensional bifurcation. In the interval of currents just below
the critical value, 1.3408� I� I*, the real part of �2,3 is al-
ways negative, but the basin of attraction to this fixed point
is finite and shrinks to a point at I*. This scenario is akin to
a subcritical Hopf bifurcation where two solutions coexist
for adequate initial conditions �12�. As we show below, this
feature is important to understand the network activity close
to this edge.

III. RESULTS AND DISCUSSION

When N neurons are coupled, a 3N-dimensional phase
space should be considered. Nevertheless, for small conduc-
tivity ��0.15 the wired neuron keeps some of the character-
istics of the isolated neuron. Indeed, it follows a spike burst-
ing activity with a small and well-defined I and �-dependent
number of spikes per burst. In consequence, we call the local
attractor, in this case, as being of the single-neuron type.
Examples for two near conditions are shown in Fig. 1�a�. The
upper �lower� curve corresponds to I=1.37 �I=1.375� and
�=0.02, although in the vicinity in the space of parameters,
there is a quantitative difference between the two curves. As
� increases, the number of spikes per burst saturates, and for
��0.15 the activity is less sensitive to the network param-
eters. Two examples are shown in Fig. 1�b�. The upper

�lower� curve corresponds to I=1.370 �I=1.380� and �
=0.18. Since this kind of activity can be seen only in a con-
nected neuron at large coupling regime, ���0.15�, we call
the corresponding local attractor as being of the collective
type.

Besides distinguishing among single-neuron- and
collective-type attractors, we also observe two different
kinds of network synchronization states: global and partial.
In the former, all neurons are found in only one of the activ-
ity states: spiking or quiescence. In the latter, neurons are
found in both activity states at the same time throughout the
network.

In order to quantitatively describe the network states and
clarify the meaning of single-neuron- and collective-type at-
tractors, as well as global and partial synchronization, we
define two order parameters: �i� the membrane potential vari-
ance,

m = Šxi
2 − 
xi�t,N

2
‹t,N, �2�

and �ii� the membrane potential covariance,

q = Šxixj − 
xi�t,N
2
‹t,N, �3�

with 
 �t,N meaning time and network averages. The mem-
brane potential variance m is a measure of the average net-
work activity, and the membrane potential covariance q is a
measure of the average global network correlation.

The above order parameters allow us to clearly identify
the just mentioned dynamic network states and attractors: �i�
when m=0, all sites have a constant and uniform membrane
potential. In that case, q also has null value and the system is
in the quiescent �Q� state. �ii� If the lattice globally oscillates
in time with a periodic instantaneous lattice averaged phase,

��t��N�
��t+T��N �6,13�, where T is the average bursting
period �see Fig. 1�, then m�0 and 0�q�m. The system
keeps spatial correlation, indicating a globally �G� coherent
state. �iii� When global spatial correlation is lost, only local
correlations of a partially correlated �P� state due to the local
coupling are expected. That is, m�0 and q�0. �iv� Single-
neuron- and collective-type attractors can be identified di-
rectly by the network activity m the former showing lower
activity than the latter. See the discussion below. Finally, �v�
if all sites strictly synchronize �S� either in a periodic or
chaotic dynamics, then at any given time xi=xj and Eqs. �2�
and �3� would yield the same result, implying m=q�0. It is
worth remarking that the last case was not observed in the
region of parameter space explored in this work.

The curves for the order parameters m and q in the func-
tion of � for fixed I=1.37 are shown in Fig. 2. This figure
results from simulations over periodic contour squared net-
works with L=32 and R=2. Here and in most of the paper,
each curve was averaged over 10 runs, starting from random
initial conditions. A transient of 200 000 time units �t.u.� was
discarded and time average was taken over a further 20 000
time units. The steplike increase in the activity level m, �

0.023, indicates that the number of spikes in each burst
changes abruptly from 2 to 3 through the whole network.
The nonmonotonic behavior in q indicates that the network
loses global correlation when the number of spikes is near to
a change. The next change, from three to four spikes, shows
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FIG. 1. Local activities of networked neurons, from square net-
works with L=32 and R=2. �a� Single-neuron-type activity, �
=0.02, I=1.37 �upper� and I=1.375 �lower�. �b� Collective-type ac-
tivity, �=0.18, I=1.37 �upper� and I=1.375 �lower�. T is the train
period.
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a finite slope in m. This suggests that there is a small region
where these two attractors coexist. At such coupling values a
small reduction in the correlation is observed in the q curve.
The change from four to five spikes is still less pronounced.
After five spikes the activity level increases without steps.
Pure five spikes is not observed, but each neuron bursts with
five or more spikes. This is the upper limit where the single-
neuron-type attractor can be found. After a soft transition in
the range 0.13���0.16, where the whole network activity
shows a fast increase with several burst lengths coexisting,
the network approaches a regime where the overall average
activity increases in a moderate rate, with 13 or more spikes
per burst. This is the locus of the collective-type attractor. To
resume, it is possible to identify single-neuron- and
collective-type attractors based on the activity level. In the
first case we have m
0.2, while in the second case we have
m�0.4.

The curves for the order parameters as functions of I for a
low �=0.04 and a high �=0.18 are shown in Fig. 3. As in
Fig. 2, the results refer to simulations over periodic contour
square networks with L=32 and R=2. Simulations with a
larger network �L=64� and a larger interaction range �R
=4� were also carried out, without significant changes. The
curve for �=0.04, where a single-neuron dynamics domi-
nates, is shown in Fig. 3�a�. As the current I increases, the
network passes from quiescence with m=q�0 to global syn-
chronization m�q	0. As in Fig. 2, in the interval where

m	0 and q�0 the global synchronization is lost. This hap-
pens when the local dynamics changes from two to three
spikes per burst. The structure of the curves reveals the rel-
evance of local neuron dynamics in this � regime.

Figure 3�b�, for �=0.18, gives an example of the general
behavior in the large-� regime, where the collective dynam-
ics dominates. As I increases there is a first transition, from
quiescence to partial synchronization and then, at a higher I,
there is a second transition, from partial to global synchroni-
zation. In the present case these two transitions are at I
�1.355 and I�1.361. Excepting small fluctuations in m,
these curves do not reveal any important structure into each
phase, a behavior at odds with the low-� regime.

A. Bistability

As noticed in Refs. �5,6� for I=3.28, where the uncoupled
neuron is chaotic, the network shows bistability between a
global synchronization state, where the spike trains are
strongly globally correlated and a partial synchronization
state, where spike trains are only locally correlated and a
space-time pattern formation occurs. We refer to those papers
for detailed descriptions of these states. This section aims to
show that bistability is already present in the low current
regime, where the uncoupled neuron is periodic.

In addition to m and q, the distribution of spike train
phases P�t*� offers further characterization of global and par-
tial synchronization. It is defined as follows: if an arbitrary
reference time t0 is taken, and the difference t*= t− t0, for the
time when a given neuron starts a spike burst is recorded,
then a phase �=2
t* /T is attributed to that neuron. Nor-
mally, every neuron starts a burst at least once during a com-
plete time interval equal to T. A complete set �t

i
*� for 1� i

�N can be obtained during a time interval T, after a given
transient time. This allows for the construction of P�t*�. The
two resulting distributions found for I=1.37 and �=0.2 are
shown in Fig. 4. There, peaked and uniform distributions
correspond, respectively, to global and partial synchroniza-
tions. For these values of I and �, when starting from random
initial conditions, the system converges to global synchroni-
zation. Partial synchronization can be attained through a
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FIG. 2. Order parameters m �solid line� and q �dashed line� in a
function of � for I=1.37, for a square network with L=32 and R
=2. Numerals indicate the number of spikes per burst in each ac-
tivity level. For more details concerning simulation conditions, see
the text.
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FIG. 3. Variance m �solid lines� and covariance q �dashed lines�
as a function of the current I for fixed �=0.04 �a� and �=0.18 �b�,
resulting from simulations of square networks with L=32 and R
=2.
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FIG. 4. Phase distribution for a square network with L=128,
R=2, I=1.37, and �=0.2. Peaked �uniform� distribution results
from G �P� states. The time t* is the time elapsed since a reference
time t0.
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suited procedure, to be explained later in this work. From
this figure, it is clear that in the partial synchronization state
the neurons are uniformly out of phase, i.e., there is no phase
clustering.

As a consequence of the bistability, the system reveals
hysteresis, as can be appreciated in Fig. 5. There, curves of m
and q for slowly increasing and decreasing I at a rate of 1
�10−8 �t.u.�−1 and fixed � are shown. The network is the
same as in Fig. 3, but in Fig. 5 the dynamic state is preserved
while I changes. As in the previous section both low, �
=0.04 and high, �=0.18 regimes were investigated. Hyster-
esis is well characterized by different paths corresponding to
increasing and decreasing I.

There are interesting results that come out from Fig. 5�b�,
where �=0.18. For increasing I, starting into the quiescent
state, global synchronization is attained at I�1.364, as in
Fig. 5�a�. This value is very close to I=1.362, when quies-
cence becomes unstable in the single neuron. The coupling is
proportional to the difference of cell potentials, and all cells
have the same potential at quiescence. In consequence, the
stability of the quiescent state should not depend on the �
value, and this seems to be indeed the case. Starting at I
=1.4 with random initial conditions the system reaches glo-
bal synchronization. For decreasing I, partial synchronization
is attained at I�1.362. We found that this is the case when-
ever ��0.15. Finally, quiescence is attained only at I
�1.283. It is important to remark that this value is signifi-
cantly smaller than the overall lower limit of the activity
state for the single neuron, I�1.341. As it will be shown
later, the low limit of activity for decreasing I decreases fur-
ther for larger �. This is an important property of the
collective-type attractor, and means that the collective behav-
ior is able to keep the network active at I levels far below
that required by the uncoupled neuron.

The largest Lyapunov exponent �LLE� was numerically
calculated following the method proposed in �14,15�. The
results, shown in Fig. 6, correspond to the situation where
the dynamical network state is preserved while I slowly de-
creases. The parameters are the same as in Fig. 5. From this
sample, we may infer that the active state has a chaotic evo-

lution either in the low �, single-neuron-type attractor or in
the high �, collective-type attractor. There are some impor-
tant aspects to note in this figure. The LLE is positive, pro-
vided the network is in an active state. The LLE correspond-
ing to partial synchronization is larger than that
corresponding to global synchronization. This is what one
could expect, since partial synchronization allows for space-
time pattern formation.

B. Phase diagram

The results presented so far for two particular values of
the coupling � is extended to a finite interval in the �-I plane
shown in Fig. 7. There, labels Gn and Pn identify, respec-
tively, regions where single-neuron-type dynamics with n
spikes per train with global or partial synchronization can be
found when starting from random initial conditions. Region
P2 appears in Fig. 2 as the interval where q
0, and the
transition from G3 to G4 appears, in that figure, as the deple-
tion in q and the step in m near �=0.071. Label G4+ identi-
fies the region where there are spike trains with four and
more spikes. For an increasing �, in the upper part of the
diagram, we pass to the G+ P region. This transition is sig-
naled in Fig. 2 as the smooth step in m and the depletion in
q in the vicinity of ��0.144. It is determined by the appear-
ance of the collective-type attractor. In general, the “�” sig-
nal means coexistence of phases. In G+ P global and partial
synchronization coexist, but with random initial conditions
the network reaches the global synchronization state G. In Q,
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FIG. 5. �Color online� Variance m �solid lines� and covariance q
�dashed lines� as a function of the current I for fixed �=0.04 �a� and
�=0.18 �b�. Increasing I is shown in gray �red� curves, with the
transition from quiescence to global synchronization signaled by an
arrow; decreasing I is shown in black. The rate of change in I is
1�10−8 �t.u.�−1. The network is the same as in Fig. 3.
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FIG. 6. Largest Lyapunov exponent � as a function of the cur-
rent I for �=0.04 �solid line� and �=0.18 �dashed line�. The network
is the same as in Figs. 3 and 5.
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FIG. 7. I vs � diagram of a square network with L=32 and R
=2. Global synchronization, partial synchronization, and quiescence
are identified, respectively, with the labels G, P, and Q. Gn and Pn
refer, respectively, to global and partial synchronization in the
single-neuron attractor with n spikes per train.
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there is only quiescence, independently of the initial condi-
tions. In Q+ P, quiescence and partial synchronization coex-
ist, with random initial conditions ending in a quiescent state
Q. In P, random initial conditions are driven to a partial
synchronization state. In G+ P and Q+ P, a partial synchro-
nization state can be attained by starting in P and then slowly
varying I or �. This is the way the uniform distribution of
Fig. 4 above was generated.

To summarize, single-neuron-type or collective-type dy-
namics can be found, respectively, at the left or at the right of
the dot-dashed line. The lower part of this line is defined by
the lower limit of partial synchronization for decreasing I, as
shown in Fig. 5. This line extends to high � and low I. For
example, it passes by the points �� , I�= �0.2,1.256�, �0.3,
1.092� and �0.4, 0.788� �not shown in the figure�.

As an illustration of the network behavior in different
phases, some snapshots are shown in Fig. 8. It is worth dis-
cussing each of them. In �a�, there is an example of global
synchronization at low-� regime �G2�. This picture corre-
sponds to the period of maximal activity, and half a period
after �or before� the membrane potential of all neurons are at
the rest value. In �b�, there is an example of partial synchro-
nization at low-� regime �P2�. Here, the network activity is
constant in time. The two pictures �c� and �d� correspond
both to I=1.37 and �=0.17 �G+ P�. In �c�, we have the pe-
riod of maximal activity of global synchronization �G�. At
the minimal activity period �not shown� all the neurons are at
rest. In �d� one can observe pattern formation �double spirals�
with constant activity. It is metastable since, for this set of
parameters, random initial conditions drive the network to
global synchronization. A dynamic state like �d� is stable in
region P of Fig. 7. Finally, �e� is also a metastable regime
with constant activity and pattern formation corresponding to
I=1.355 and �=0.17�Q+ P�. Quiescence is the stable state
with this set of parameters.

The above results should be viewed in the context of co-
operative behavior between the interactive neurons. It is
known that the isolated HR neuron is periodic for I�3.28
�6�. The largest network Lyapunov exponent for P and G
attractors is clearly positive, and this was confirmed for a
network of different sizes and transient times up to
200 000 t.u. Concerning these facts, we can draw the follow-
ing conclusions: �i� the collective behavior produces a cha-
otic collective evolution, although the corresponding evolu-
tion of an isolated neuron is periodic; �ii� the hysteresis
shows that, deep inside the region where the isolated neuron

is quiescent, the collective behavior keeps the network active
and chaotic. This can be explained similarly to what happens
with the quartic map �16�. The isolated neuron has both a
stable fixed point �the quiescent attractor� with a large basin
of attraction and an unstable fixed point with a small window
mapping the unstable to the stable one. When the interaction
is turned on, and the whole network is into the basin of
attraction of the chaotic attractor, the collective behavior pre-
vents it from finding its way back to the quiescent attractor.

IV. CONCLUSIONS

In the present work a 2D network of HR neurons was
investigated in the vicinity of the activity transition, where
the isolated neuron passes from a quiescent to a periodic,
active state. Each neuron is uniformly coupled through elec-
trical bonds to all neighbors closer than the interaction range
R. We have shown that, depending on the coupling strength,
there are two different kinds of local attractors, and that this
determines the whole network behavior. At low coupling
there is a single-neuron-type local attractor, in which the
neuron activity is sensitive to the current I. Depending on the
initial conditions the network globally or partially synchro-
nizes and, in the last case, pattern formation and traveling
waves can be observed. If ��0.15 there is the coupled-
neuron attractor, which is less sensitive to the external cur-
rent and, indeed, supports the network activity at very low I
values.

Partial synchronization, that allows for pattern formation,
is relevant from a biological point of view. In this simple
model of uniform electrical couplings it can be attained at
appropriate initial conditions in a wide region in the �-I
plane. In a narrow region at large � it can be attained with
random initial conditions. It is a matter for further investiga-
tion the role that nonuniform electrical coupling, as well as
more complex synaptic connections, can play.
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FIG. 8. �Color online� Snapshots of the network activity in some regions of phase diagram: �a� global synchronization with two spikes
per train �G2�, I=1.35, �=0.025; �b� partial synchronization with two spikes per train �P2�, I=1.35, �=0.045; �c� and �d�, respectively, global
and partial synchronization, I=1.37, �=0.17 �G+ P�; �e� partial synchronization, I=1.355, �=0.17 �Q+ P�.
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